KU LEUVEN

PLATIRUS: PLATInum group metals Recovery Using Secondary raw materials

The PLATIRUS PGM recycling flowsheet: MW leaching – Ionic liquid solvent extraction – Gas diffusion electrocrystallization

Platirus Exploitation Workshop 21 April 2021, online

Jeroen Spooren and Xochitl Dominguez – VITO n.v.

Sofía Riaño – KU Leuven

PLATIRUS is a project funded by the European Commission.

This project has received funding from the European Union's Horizon 2020 Research and Innovation program under Grant Agreement n° 730224

- MW-leaching
- Solvent extraction with ionic liquids
- Gas diffusion electrocrystallization
- Integrated PLATIRUS flowsheet

• MW-leaching

- Solvent extraction with ionic liquids
- Gas diffusion electrocrystallization
- Integrated PLATIRUS flowsheet

MW-leaching: Technology concept and description

Pressure sealed vessel

MW-leaching: Main achievements

MW leaching of milled ceramic catalysts:

- Fast: 10 min leaching (150 °C)
- Less chemicals required:
 - 6 M HCl (vs. 12 M HCl)
 - No oxidation agent needed!

Abo Atia, T., et al., *Resour. Conserv. Recy.* **2021**, **166**, 105349. <u>10.1016/j.resconrec.2020.105349</u>

Platirus

MW leaching of non-milled ceramic catalysts:

- Very fast: 3 min leaching (220 °C)
- Less chemicals required:
 - 6 M HCl (vs. 12 M HCl)
 - No oxidation agent needed!
- No stirring needed, filtration facilitated

Abo Atia, T.; Spooren, J., Chem. Eng. Process. 2021, 164, 108378. 10.1016/j.cep.2021.108378

150 160 170 180 190 200 210 220

T(°C)

20 -

MW-leaching: Main achievements

~50g/batch(1L) TRL 5

Future work:

Platirus

- Scaling up of microwave assisted leaching
- Further reduce the HCl concentration
- (Re)cycling of leachates

Feed	1 st leaching	step	2 nd leaching step			
	Looching conditions	Removed main	Looching conditions	Metal recovery (%)		
	Leaching conditions	impurities	Leaching conditions	Rh	Pd	Pt
Metallic foil catalyst	MW-leaching in dilute acid	Fe , Al, Ca, Ce, Cr, Ni, Zn	6 M HCl + H ₂ O ₂	73.2±0.8	90±1	91±3
WEEE (capacitors)	MW-leaching in dilute acid	Ba, Fe, Ni, Pb, Sn, Ti, Zn	6 M HCl + H ₂ O ₂	/	95±1	/
Anode slime	Room-temperature alkaline leaching	As , Cu, Pb, Sn	6 M HCl	77	96	84

• MW-leaching

• Solvent extraction with ionic liquids

- Gas diffusion electrocrystallization
- Integrated PLATIRUS flowsheet

IL solvent extraction: Technology concept and description

- Negligible vapor pressure
- High thermal stability
- Do not accumulate static electricity
- Selective and efficient in solvent extraction
- Sometimes greener and safer than molecular solvents

METAL SOLVENT EXTRACTION

A method to separate metal complexes, based on their chemical properties, using an extractant and two immiscible liquids

- Capability to separate even very similar elements: several different extractants are available
- Low energy consumption
- Easy continuous operation
- Large production capacity
- High selectivity

IL solvent extraction: Main achievements

Platirus

IL solvent extraction: Main achievements

Solvent extraction with ionic liquids: application on diffe	erent feeds

Feed	Number of stops	Metal recovery (%)			Main impurites in output solutions			
	Number of steps	Rh		Pt	Raffinate	Stripping-Pd	Stripping-Pt	
Ceramic	4	54	81	62	Al, Ce, Mg, and Zr	Zn	Ca, Al (< 1.0 ppm)	
Metallic foil	5	77	95	79	Al, Ba, Ce, Cr, La, and Nd	As, Cu, and Zn	Al, Ca and Zn (< 10 ppm)	
WEEE	3	n/a	94	n/a	Ba, Ca, Cu, La, Nd, Ni, Ti, and Zr	As and Zn	n/a	

- $\circ~$ It is possible to purify Rh, Pd and Pt ~
- **o** Pd and Pt can particularly be stripped with high purity
- Rh purity could be improved if the pregnant leach solution comes more concentrated
- The process can be run in continuous mode using mixer-settlers
- Only one extractant is needed, the separation is mainly based on scrubbing and selective strippings
- $\circ~$ The ionic liquid is stable and can be recycled

atirus

• Further optimization in pilot plant is required to bring the technology closer to the market

- MW-leaching
- Solvent extraction with ionic liquids
- Gas diffusion electrocrystallization
- Integrated PLATIRUS flowsheet

GDEx: Technology concept and description

atirus

 Process of reactive precipitation of metals in solution with intermediaries issued from the electrochemical reduction of gases, at GDEs

- Fast, economical, efficient and sustainable technology for the removal and recovery of dilute metals and metalloids from fluids (wastewater, brines, leachates, ..., solvents)
- Tackles unique challenges that no unique BAT can deal with effectively and economically
 - Optimal for dilute metal concentrations
 - < 10 g L-1, preferably at ppm level
- Selective recovery from complex matrices
- GDEx meets discharge limits & effectively recovers the targeted metals into products that can be integrated within existing processing chains

GDEx: Qualitative benchmark vs BAT

	Technologies									
Criteria	Coagulation and flocculation	Precipitation (e.g., pellet crystallization)	Electrocoagulation and electroflotation	Membrane electrolysis	Electrodeposition or electrowinning	GDEx				
Chemical addition	Essential (high)	Essential (high)	No	No	Sometimes	No				
Sludge formation	High	Medium to low	Medium to low	No	No	No				
Selectivity	High	Medium to high	Low	Possible to high	Possible to high	Possible to high				
Investment	Low	Medium to high	Medium	Medium	Medium to high	Medium to low				
Operational costs	Very high	Very high	Very high	Medium to high**	Medium to low**	Low				
High volumes	Discouraged	Yes	Discouraged	Discouraged	Yes	Yes				
Metal concentration	High	Medium to high	High	Medium to very low	Medium to high	Medium to very low				
Complex and varying matrices	No	Possible to yes	No	Possible to yes	Possible to yes	Possible to yes				
Pre-treatment needed	pH correction	pH correction	Conductivity corr.	Conductivity & pH corr.	Not significant	Not significant				
Expected effectiveness	>60%	>90%	Below 60%	>90%	>90%	>90%				
Product can be valorized	No	Sometimes	No	Sometimes	Yes	Yes				
Environmental issues	Yes (polluted sludge)*	No	Yes (sludge, but easier)*	Yes (chlorine)	Yes (toxic products)	Sometimes (chlorine)				
Complexity	High	Medium to low	High (complexation)	High	Medium	Medium				
Automation	Possible	Possible	Possible	Possible	Possible	Possible				
Component replacement	No	Yes (seeding material)	Sporadic	High (membranes)	Sporadic	Sporadic				

Flemish Knowledge Centre for Best Available Techniques¹ WASS (water treatment selection system)² \rightarrow decision support tool

 \rightarrow Diverse BAT physicochemical treatments vs new electrochemical methods vs GDEx

** very high for very low metal concentrations

PGMs Recovery using Secondary Raw Materials

Platirus

GDEx: Main achievements

• Processing of Batch A

latirus

• 1 publication accepted, 2 in preparation

- GDEx (fed with CO₂) attained a recovery of ~70 ± 1% of Pd from the KU Leuven strip sample.
- Pd was recovered with a purity of 91– 93%, with Pt, Rh and Al as the major impurities, and additional minor impurities of Ba, Fe, Mg, Co and Cu.
- The Pd⁰ sponge generated by GDEx
 was redissolved to Pd nitrate for
 ultimate recycling on the
 remanufacturing of catalytic
 converters, which despite the small
 impurities performed better than the
 conventional ones.
- The key GDEx patent EP3242963B1 has been granted in Europe in the course of Platirus (priority 2015)
- A patent has been filled within the Platirus project: EP21165681 Recovery of PGMs & preparation of PGM nanoparticles with GDEx fed by CO₂

GDEx: Research & valorization roadmap for metal recovery

PGMs Recovery using Secondary Raw Materials

Platirus

- MW-leaching
- Solvent extraction with ionic liquids
- Gas diffusion electrocrystallization
- Integrated PLATIRUS flowsheet

Integrated PLATIRUS process

Platirus

Nicol, G.; et al., Platinum Group Metals Recovery Using Secondary Raw Materials (PLATIRUS): Project Overview with a Focus on Processing Spent Autocatalyst. Johnson Matthey Technolo. Rev. 2021, 65 (1), 127-147. <u>https://doi.org/10.1595/205651321X16057842276133</u>

Conclusions

- The selected PLATIRUS process was tested in cascade on milled spent ceramic catalyst material, and consists of:
 - MW-assisted leaching:

Overall ~1.35 kg material was leached in 6 M HCl

• IL solvent extraction:

12 L of leachate processed by a continuous solvent extraction demonstrator, using multi-stage mixer-settlers

• Gas diffusion electrocrystallization:

Recovered ~70% of Pd from the strip sample with a purity of 91-93%

- Each individual technology reached TRL 5, whereas the overall PLATIRUS flowsheet was tested at TRL 4
- Further optimization and upscaling of all 3 processing steps is planned

Jeroen Spooren, jeroen.spooren@vito.be Xochitl Dominguez, <u>xochitl.dominguez@vito.be</u>

Sofía Riaño, sofia.riano@kuleuven.be

Project website: <u>www.platirus.eu</u>

PLATIRUS is a project funded by the European Commission. This project has received funding from the European Union's Horizon 2020 Research and Innovation program under Grant Agreement n° 730224

